Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes
نویسندگان
چکیده
This paper studies the Voronoi diagrams on 2-manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point-source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line-segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n-face mesh with m generators, where N =max{m,n}. Computational results on real-world models demonstrate the efficiency of our algorithm.
منابع مشابه
On Voronoi-Delaunay Duality and Delaunay Meshes
In this paper, we are concerned with Delaunay triangulations of the vertex set of a piecewise flat (pwf) surface. We first propose the notion of well-formed Voronoi diagrams and establish a precise dual relationship between them and proper Delaunay triangulations on pwf surfaces. Then we provide an algorithm which, given any input manifold triangle mesh, constructs aDelaunay mesh: a manifold tr...
متن کاملEfficiently computing geodesic offsets on triangle meshes by the extended Xin-Wang algorithm
Geodesic offset curves are important for many industrial applications, such as solid modeling, robot-path planning, the generation of tool paths for NC machining, etc. Although the offset problem is well studied in classical differential geometry and computer-aided design, where the underlying surface is sufficiently smooth, very few algorithms are available for computing geodesic offsets on di...
متن کاملHigher-Order Geodesic Voronoi Diagrams in a Polygonal Domain with Holes
We investigate the higher-order Voronoi diagrams of n point sites with respect to the geodesic distance in a simple polygon with h > 0 polygonal holes and c corners. Given a set of n point sites, the korder Voronoi diagram partitions the plane into several regions such that all points in a region share the same k nearest sites. The nearest-site (first-order) geodesic Voronoi diagram has already...
متن کاملVoronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon
Given a set of sites in a simple polygon, a geodesic Voronoi diagram partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones form ≤ n/polylogn. Moreover, the algorithms for the ne...
متن کاملExact Implementation of Arrangements of Geodesic Arcs on the Sphere with Applications
Recently, the Arrangement 2 package of Cgal, the Computational Geometry Algorithms Library, has been greatly extended to support arrangements of curves embedded on two-dimensional parametric surfaces. The general framework for sweeping a set of curves embedded on a two-dimensional parametric surface was introduced in [3]. In this paper we concentrate on the specific algorithms and implementatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 33 شماره
صفحات -
تاریخ انتشار 2014